Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Pharmacol Toxicol ; 13: 9, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23025553

RESUMO

BACKGROUND: The disappointing clinical failures of five topical vaginal microbicides have provided new insights into factors that impact microbicide safety and efficacy. Specifically, the greater risk for human immunodeficiency virus type 1 (HIV-1) acquisition associated with multiple uses of a nonoxynol-9 (N-9)-containing product has highlighted the importance of application frequency as a variable during pre-clinical microbicide development, particularly in animal model studies. METHODS: To evaluate an association between application frequency and N-9 toxicity, experiments were performed using a mouse model of cervicovaginal microbicide safety. In this model system, changes in cervical and vaginal epithelial integrity, cytokine release, and immune cell infiltration were assessed after single and multiple exposures to N-9. RESULTS: After the initial application of N-9 (aqueous, 1%), considerable damage to the cervical epithelium (but not the vaginal epithelium) was observed as early as 10 min post-exposure and up to 8 h post-exposure. Subsequent daily exposures (up to 4 days) were characterized by diminished cervical toxicity relative to single exposures of like duration. Levels of pro-inflammatory cytokines released into the cervicovaginal lumen and the degree of CD14-positive immune cell infiltration proximal to the cervical epithelium were also dependent on the number of N-9 exposures. CONCLUSIONS: Rather than causing cumulative cervical epithelial damage, repeated applications of N-9 were characterized by decreased sensitivity to N-9-associated toxicity and lower levels of immune cell recruitment. These results provide new insights into the failure of N-9-based microbicides and illustrate the importance of considering multiple exposure protocols in pre-clinical microbicide development strategies.


Assuntos
Anti-Infecciosos Locais/toxicidade , Colo do Útero/efeitos dos fármacos , Nonoxinol/toxicidade , Espermicidas/toxicidade , Vagina/efeitos dos fármacos , Animais , Anti-Infecciosos Locais/administração & dosagem , Colo do Útero/imunologia , Colo do Útero/patologia , Citocinas/imunologia , Esquema de Medicação , Tolerância a Medicamentos , Epitélio/efeitos dos fármacos , Epitélio/imunologia , Epitélio/patologia , Feminino , Camundongos , Nonoxinol/administração & dosagem , Espermicidas/administração & dosagem , Vagina/imunologia , Vagina/patologia
2.
J Biomed Biotechnol ; 2011: 941061, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22131821

RESUMO

Vaginal microbicides that reduce or eliminate the risk of HIV-1 sexual transmission must do so safely without adversely affecting the integrity of the cervicovaginal epithelium. The present studies were performed to assess the safety of the biguanide-based antiviral compound NB325 in a formulation suitable for topical application. Experiments were performed using a mouse model of cervicovaginal microbicide application, which was previously shown to be predictive of topical agent toxicity revealed in microbicide clinical trials. Mice were exposed vaginally to unformulated NB325 or NB325 formulated in the hydroxyethyl cellulose "universal placebo." Following exposures to formulated 1% NB325 for 10 min to 24 h, the vaginal and cervical epithelia were generally intact, although some areas of minimal vaginal epithelial damage were noted. Although formulated NB325 appeared generally safe for application in these studies, the low but observable level of toxicity suggests the need for improvements in the compound and/or formulation.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Biguanidas/administração & dosagem , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Administração Intravaginal , Animais , Fármacos Anti-HIV/efeitos adversos , Biguanidas/efeitos adversos , Modelos Animais de Doenças , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Feminino , Humanos , Camundongos
3.
Biomed Pharmacother ; 64(10): 723-32, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21106331

RESUMO

Previous investigations showing that polydisperse biguanide (PDBG) molecules have activity against human immunodeficiency virus type 1 (HIV-1) also suggested a relationship between PDBG biologic activity and the lengths of hydrocarbon linkers surrounding the positively charged biguanide unit. To better define structure-activity relationships, PDBG molecules with select linker lengths were evaluated for cytotoxicity, anti-HIV-1 activity, and in vivo toxicity. Results of the in vitro experiments demonstrated that increases in linker length (and, therefore, increases in compound lipophilicity) were generally associated with increases in cytotoxicity and antiviral activity against HIV-1. However, a relationship between linker length asymmetry and in vitro therapeutic index (TI) suggested structural specificity in the mechanism of action against HIV-1. Polyethylene hexamethylene biguanide (PEHMB; biguanide units spaced between alternating ethylene and hexamethylene linkers) was found to have the highest in vitro TI (CC50/IC50) among the compounds examined. Recent improvements in PEHMB synthesis and purification have yielded preparations of PEHMB with in vitro TI values of 266 and 7000 against HIV-1 strains BaL and IIIB, respectively. The minimal toxicity of PEHMB relative to polyhexamethylene biguanide (PHMB; biguanide units alternating with hexamethylene linkers) in a murine model of cervicovaginal microbicide toxicity was consistent with considerable differences in cytotoxicity between PEHMB and PHMB observed during in vitro experiments. These structure-activity investigations increase our understanding of PDBG molecules as agents with activity against HIV-1 and provide the foundation for further preclinical studies of PEHMB and other biguanide-based compounds as antiviral and microbicidal agents.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Biguanidas/química , Biguanidas/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Animais , Fármacos Anti-HIV/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Biguanidas/síntese química , Linhagem Celular , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Camundongos , Modelos Animais , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Polietilenos/química , Polietilenos/farmacologia , Relação Estrutura-Atividade
4.
AIDS Res Hum Retroviruses ; 23(1): 33-42, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17263630

RESUMO

A potential strategy to combat the worldwide AIDS epidemic is to develop a vaginal microbicide that prevents the sexual transmission of HIV-1. One approach for preventing vaginal HIV transmission is to block the viral coreceptor CCR5 with naturally occurring chemokine ligands. In this study, we used a cynomolgus macaque model to evaluate whether a variant of the CCR5 ligand RANTES (-2 RANTES), tested alone or in a nonphospholipid liposome carrier (Novasomes 7474), blocks vaginal challenge with a CCR5-tropic simian/human immunodeficiency virus (SHIV(162P3)). When tested in vitro, the synthetic chemokine potently inhibited SHIV(162P3) infection of cynomolgus macaque peripheral blood mononuclear cells (PBMC). Colposcopic examinations of treated animals and histological examination of cervicovaginal biopsies showed minimal signs of tissue inflammation following vaginal application of Novasomes 7474, -2 RANTES formulated in Novasomes 7474, or -2 RANTES alone. Following vaginal challenge with SHIV(162P3), complete protection was observed in four of six animals treated vaginally with -2 RANTES (0.13 mM) formulated in Novasomes 7474. However, the same proportion of animals was protected by treatment with Novasomes 7474 carrier alone. Two of five animals treated with 0.5 mM -2 RANTES in PBS were protected from infection. Further, all animals were infected when treated with lower chemokine concentrations. These findings indicate that natural CCR5 ligands may have limited efficacy in stringent nonhuman primate models for vaginal infection. In comparison, liposomal agents such as Novasomes 7474 provide comparatively robust protection against vaginal transmission.


Assuntos
Fármacos Anti-HIV/farmacologia , Anti-Infecciosos Locais/farmacologia , Quimiocina CCL5/farmacologia , HIV-1/efeitos dos fármacos , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Administração Intravaginal , Animais , Fármacos Anti-HIV/administração & dosagem , Anti-Infecciosos Locais/toxicidade , Colposcopia , Modelos Animais de Doenças , Estudos de Avaliação como Assunto , Feminino , Lipossomos , Macaca mulatta , RNA Viral/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Fatores de Tempo , Vagina/efeitos dos fármacos , Carga Viral
5.
Antimicrob Agents Chemother ; 50(4): 1497-509, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16569870

RESUMO

A potential strategy that can be used to combat the worldwide AIDS epidemic is the development of a vaginal microbicide that prevents the sexual transmission of human immunodeficiency virus type 1 (HIV-1). Certain CC chemokines, including RANTES, MIP-1alpha, and MIP-1beta, might facilitate the development of such microbicides since they potently suppress HIV-1 infection by binding to CCR5, the viral coreceptor used by most sexually transmitted strains of HIV-1 to enter host cells. In this study, we evaluated whether a CCR5-specific fragment of RANTES that lacks two N-terminal residues (-2 RANTES) and possesses especially potent HIV-1 suppressive activity has toxicity profiles conducive to the advancement of testing in candidate microbicide formulations. Analyses were carried out with a synthetic version of the chemokine, which was formulated with either Novasomes 7474, a nonphospholipid liposome, or methylcellulose gel. Dialysis studies demonstrated that the formulated -2 RANTES was released from both vehicles and retained anti-HIV-1 activity. Preclinical toxicity studies carried out with Swiss Webster mouse and New Zealand White rabbit vaginal irritation models demonstrated minimal inflammation and minimal adverse changes in cervicovaginal tissue integrity after short-term (10 min) and long-term (24 h) exposure to formulations containing up to 1 mg/ml of -2 RANTES. Similarly, no toxicity was observed with formulations of bioactive murine RANTES in the Swiss Webster mouse vaginal irritation model. Overall, these preclinical studies suggest that -2 RANTES is suitable for further testing as a candidate anti-HIV-1 microbicide.


Assuntos
Fármacos Anti-HIV/farmacologia , Anti-Infecciosos Locais/farmacologia , Antagonistas dos Receptores CCR5 , Quimiocina CCL5/farmacologia , HIV-1/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Administração Intravaginal , Animais , Anti-Infecciosos Locais/toxicidade , Feminino , Humanos , Antígenos Comuns de Leucócito/análise , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Coelhos , Vagina/efeitos dos fármacos
6.
J Virol ; 79(22): 14318-29, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16254366

RESUMO

Beta-defensins are small (3 to 5 kDa in size) secreted antimicrobial and antiviral proteins that are components of innate immunity. Beta-defensins are secreted by epithelial cells, and they are expressed at high levels in several mucosae, including the mouth, where the concentration of these proteins can reach 100 microg/ml. Because of these properties, we wondered whether they could be part of the defenses that lower oral transmission of human immunodeficiency virus (HIV) compared to other mucosal sites. Our data show that select beta-defensins, especially human beta-defensin 2 (hBD2) and hBD3, inhibit R5 and X4 HIV infection in a dose-dependent manner at doses that are compatible with or below those measured in the oral cavity. We observed that beta-defensin treatment inhibited accumulation of early products of reverse transcription, as detected by PCR. We could not, however, detect any reproducible inhibition of env-mediated fusion, and we did not observe any modulation of HIV coreceptors following treatment with hBD1 and hBD2, in both resting and phytohemagglutinin-activated cells. Our data instead suggest that, besides a direct inactivation of HIV virions, hBD2 inhibits HIV replication in the intracellular environment. Therefore, we speculate that beta-defensins mediate a novel antiretroviral mechanism that contributes to prevention of oral HIV transmission in the oral cavity. Immunohistochemical data on hBD2 expression in oral mucosal tissue shows that hBD2 is constitutively expressed, forming a barrier layer across the epithelium in healthy subjects, while in HIV-positive subjects levels of hBD2 expression are dramatically diminished. This may predispose HIV-positive subjects to increased incidence of oral complications associated with HIV infection.


Assuntos
Infecções por HIV/prevenção & controle , beta-Defensinas/fisiologia , Fusão Celular , Linhagem Celular , Células Cultivadas , Humanos , Linfócitos/virologia , Reação em Cadeia da Polimerase
7.
Biomed Pharmacother ; 59(8): 460-8, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16154719

RESUMO

Comparative assays of in vitro cytotoxicity using nonoxynol-9 (N-9) and the candidate microbicides C31G and sodium dodecyl sulfate (SDS) demonstrated that these agents, which are, respectively, characterized as nonionic, amphoteric, and anionic surfactants, differed in their concentration-dependent effects on cell viability, especially after prolonged exposure. We hypothesized that differences in cellular sensitivity may have been due, in part, to cellular changes induced by long-term exposure to each agent. To examine this possibility, HeLa cells were exposed to N-9, C31G, or SDS for extended periods of time and subsequently reassessed for sensitivity to each of these agents. Following 10 continuous days of C31G exposure, HeLa cells were less sensitive to a subsequent C31G exposure compared to cells that had not undergone long-term C31G treatment. Interestingly, long-term C31G exposure also changed subsequent sensitivity to N-9 but not SDS. In contrast, prolonged exposure to either N-9 or SDS did not reduce sensitivity to re-exposure. The effect of long-term C31G exposure was both concentration-dependent and transient, as treated cells reverted to pre-exposure sensitivity in a time-dependent manner following the cessation of C31G exposure. Lipid analyses of cells exposed to C31G for extended durations revealed altered phospholipid profiles relative to C31G-naïve cells. Experiments examining the individual components of C31G demonstrated the involvement of the amine oxide moiety in reductions in cellular sensitivity. These studies, which provide new information concerning the cytotoxicity of surfactant microbicides, suggest that cervicovaginal epithelial cells may have greater in vivo tolerance for products containing C31G through unique interactions between C31G and components of the cellular membranes.


Assuntos
Anti-Infecciosos/farmacologia , Betaína/análogos & derivados , Tolerância a Medicamentos , Ácidos Graxos Insaturados/farmacologia , Aminas/química , Aminas/farmacologia , Anti-Infecciosos/química , Betaína/química , Betaína/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ácidos Graxos Insaturados/química , Células HeLa , Humanos , Lipídeos de Membrana/metabolismo , Nonoxinol/farmacologia , Dodecilsulfato de Sódio/farmacologia , Fatores de Tempo
8.
Biomed Pharmacother ; 59(8): 430-7, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16154721

RESUMO

C31G, which has potent activity against the human immunodeficiency virus type 1 (HIV-1) and an established record of safety in animal studies and human trials, is a microbicidal agent comprised of a buffered equimolar mixture of two amphoteric, surface-active agents: an alkyl amine oxide (C14AO) and an alkyl betaine (C16B). Studies of long-term in vitro exposure to C31G and its constituents have suggested that the components of C31G may contribute differentially to its toxicity and efficacy. In the present studies, in vitro assays of cytotoxicity and anti-HIV-1 activity demonstrated that C16B was slightly less cytotoxic compared to either C31G or C14AO, whereas the anti-HIV-1 activities of C31G and its individual constituents were similar. In the murine model of cervicovaginal microbicide toxicity, in vivo exposure to C14AO resulted in severe cervical inflammation followed by a delayed disruption of the columnar epithelium. In contrast, exposure to C16B caused severe cervical epithelial disruption and a secondary, less intense inflammatory response. These results demonstrate that (i) there are both mechanistic and temporal differences in toxicity associated with the components of C31G not necessarily predicted by in vitro assessments of cytotoxicity and (ii) contributions of each component to the anti-HIV-1 activity of C31G appear to be equal. In addition, these findings indicate that direct and indirect mechanisms of in vivo toxicity can be observed as separate but interrelated events. These results provide further insight into the activity of C31G, as well as mechanisms potentially associated with microbicide toxicity.


Assuntos
Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/toxicidade , Betaína/análogos & derivados , Colo do Útero/efeitos dos fármacos , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos Insaturados/toxicidade , HIV-1/efeitos dos fármacos , Administração Intravaginal , Aminas/química , Aminas/farmacologia , Aminas/toxicidade , Animais , Fármacos Anti-HIV/química , Betaína/química , Betaína/farmacologia , Betaína/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colo do Útero/patologia , Relação Dose-Resposta a Droga , Ácidos Graxos Insaturados/química , Feminino , Humanos , Inflamação , Camundongos , Modelos Animais , Mucosa/efeitos dos fármacos , Mucosa/patologia
9.
Antimicrob Agents Chemother ; 49(4): 1509-20, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15793133

RESUMO

C31G is currently the focus of clinical trials designed to evaluate this agent as a microbicidal and spermicidal agent. In the following studies, the in vivo safety of C31G was assessed with a Swiss Webster mouse model of cervicovaginal toxicity and correlated with results from in vitro cytotoxicity experiments and published clinical observations. A single exposure of unformulated 1% C31G resulted in mild-to-moderate epithelial disruption and inflammation at 2 and 4 h postapplication. The columnar epithelium of the cervix was the primary site of damage, while no perturbation of the vaginal mucosa was observed. In contrast, application of unformulated 1.7% C31G resulted in greater levels of inflammation in the cervical epithelium at 2 h postapplication and severe epithelial disruption that persisted to 8 h postapplication. Application of a nonionic aqueous gel formulation containing 1% C31G resulted in no apparent cervicovaginal toxicity at any time point evaluated. However, formulation of 1.7% C31G did not substantially reduce the toxicity associated with unformulated C31G at that concentration. These observations correlate with findings gathered during a recent clinical trial, in which once-daily applications resulted in no adverse events in women receiving the formulation containing 1% C31G, compared to moderate-to-severe adverse events in 30% of women receiving the 1.7% C31G formulation. The Swiss Webster mouse model was able to effectively discriminate between concentrations and formulations of C31G that produced distinct clinical effects in human trials. The Swiss Webster animal model may be a highly valuable tool for preclinical evaluation of candidate vaginal microbicides.


Assuntos
Betaína/análogos & derivados , Betaína/efeitos adversos , Colo do Útero/efeitos dos fármacos , Ácidos Graxos Insaturados/efeitos adversos , Nonoxinol/efeitos adversos , Vagina/efeitos dos fármacos , Administração Intravaginal , Animais , Anti-Infecciosos Locais , Betaína/administração & dosagem , Betaína/toxicidade , Linhagem Celular , Colo do Útero/citologia , Ácidos Graxos Insaturados/administração & dosagem , Ácidos Graxos Insaturados/toxicidade , Feminino , Células HeLa , Humanos , Camundongos , Nonoxinol/administração & dosagem , Nonoxinol/toxicidade , Vagina/citologia , Cremes, Espumas e Géis Vaginais/administração & dosagem , Cremes, Espumas e Géis Vaginais/efeitos adversos , Cremes, Espumas e Géis Vaginais/toxicidade
10.
Antimicrob Agents Chemother ; 48(5): 1837-47, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15105142

RESUMO

Clinical trials evaluating the efficacy of nonoxynol-9 (N-9) as a topical microbicide concluded that N-9 offers no in vivo protection against human immunodeficiency virus type 1 (HIV-1) infection, despite demonstrated in vitro inactivation of HIV-1 by N-9. These trials emphasize the need for better model systems to determine candidate microbicide effectiveness and safety in a preclinical setting. To that end, time-dependent in vitro cytotoxicity, as well as in vivo toxicity and inflammation, associated with N-9 exposure were characterized with the goal of validating a mouse model of microbicide toxicity. In vitro studies using submerged cell cultures indicated that human cervical epithelial cells were inherently more sensitive to N-9-mediated damage than human vaginal epithelial cells. These results correlated with in vivo findings obtained by using Swiss Webster mice in which intravaginal inoculation of 1% N-9 or Conceptrol gel (containing 4% N-9) resulted in selective and acute disruption of the cervical columnar epithelial cells 2 h postapplication accompanied by intense inflammatory infiltrates within the lamina propria. Although damage to the cervical epithelium was apparent out to 8 h postapplication, these tissues resembled control tissue by 24 h postapplication. In contrast, minimal damage and infiltration were associated with both short- and long-term exposure of the vaginal mucosa to either N-9 or Conceptrol. These analyses were extended to examine the relative toxicity of polyethylene hexamethylene biguanide (PEHMB), a polybiguanide compound under evaluation as a candidate topical microbicide. In similar studies, in vivo exposure to 1% PEHMB caused minimal damage and inflammation of the genital mucosa, a finding consistent with the demonstration that PEHMB was >350-fold less cytotoxic than N-9 in vitro. Collectively, these studies highlight the murine model of toxicity as a valuable tool for the preclinical assessment of toxicity and inflammation associated with exposure to candidate topical microbicides.


Assuntos
Anti-Infecciosos Locais/toxicidade , Colo do Útero/patologia , Vagina/patologia , Vaginite/induzido quimicamente , Administração Intravaginal , Animais , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/efeitos adversos , Anti-Infecciosos Locais/administração & dosagem , Linhagem Celular , Células Cultivadas , Colo do Útero/efeitos dos fármacos , Feminino , Queratinócitos/efeitos dos fármacos , Camundongos , Nonoxinol/administração & dosagem , Nonoxinol/efeitos adversos , Vagina/efeitos dos fármacos , Cremes, Espumas e Géis Vaginais/administração & dosagem , Cremes, Espumas e Géis Vaginais/toxicidade , Vaginite/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...